
Creative Software Design

6 – Class

Yoonsang Lee

Fall 2023

Midterm Exam

• Date & time: Oct 31, AM 09:30 ~ 10:30

• Place: IT.BT 609

• Scope: Lecture 2 ~ 7

• You cannot leave until 30 minutes after the start of the exam even if you
finish the exam earlier.

• That means, you cannot enter the room after 30 minutes from the start of
the exam (do not be late, never too late!).

• Please bring your student ID card to the exam.

• We will not accept questions unless the error in the problem is clearly evident.
You should solve the problem based on the information provided in the
question.

Outline

• Class & Instance

• Class access control

• Member functions

• Constructor, Destructor

• this pointer

• Struct in C vs. Struct in C++, Struct vs. Class in

C++

Class

• A class is a user-defined data type,

– which holds its own member variables and member functions.

– These members can be accessed by creating an instance of that class.

• C++ classes are similar to C structures,

– except member functions and access control.

class ClassName

{

accessSpecifier:

memberVariables;

...

memberFunctions() {...}

...

...

};

class Point

{

private:

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

typedef struct _Point

{

int x;

int y;

} Point;

Class vs. Instance (or Object)

● Class - type vs. Instance (or Object) - variable

● Analogous to bread pan vs. bread.

● Creating an instance (or object) of a class is called instantiation.

● Instances have allocated memory to store specific data.

● There can be multiple identical instances of the same class type, but there

cannot exist identical classes.

class Point

{

private:

int x;

int y;

public:

void setXY(int a, int b)

{x=a; y=b;}

};

int main(void)

{

Point P1;

P1.setXY(3, 4);

return 0;

}

class

instance

Class definition

member functions of the class (data hiding)

variables

Class access control

• Classes can have members with different access control.
– The members are either public, private, or protected (access

specifiers).

– public members are accessible from anywhere.

– private members are only accessible by the class's member functions.

– protected members are accessible by the class's member functions and its
derived classes' member functions - will be covered in a later lecture (8-
Inheritance).

• Any member encountered after a specifier will have the associated
access until another specifier is encountered.

class Point {

private:

int x;

int y;

...

public:

void setXY(int a, int b) {x=a; y=b;}

...

};

public members

private members

Class access control

• If member variables are private, they are not

accessible outside of the class. They need public

access functions.

class Point {

private:

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.x = 3; // compile error!

P1.setXY(3, 4);

return 0;

}

Class access control : Stock example

class Student {

private:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

public:

void SetInfo(string name, string id) { name_ = name, id_ = id; }

void SetScores(int midterm, int final, int hw1, int hw2) {

midterm_ = midterm, final_ = final, hw1_ = hw1, hw2_ = hw2;

}

void ProcessGrade() { ... }

string GetGrade() { return grade_; }

};

int main() {

Student a_student;

a_student.SetInfo("gdhong", "13001");

a_student.SetScores(99, 90, 85, 100);

a_student.ProcessGrade(); // Call the member function ProcessGrade.

a_student.grade_ = "D-"; // Compile error!

string grade = a_student.GetGrade(); // Fine.

...

}

Class access control : Student example

Member function

● A class can have member functions which work on the member variables of

the class.

○ Member functions are declared in the class definition.

○ Member functions are defined either in the class definition (in header

files) or outside of the class definition (usually in source files).

○ Member functions are accessed by using . operator, like member varia

bles.

Member function definition in the class

definition : Student example

// student.h

class Student {

private:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

public:

void SetInfo(string name, string id) // inline function

{ name_ = name, id_ = id; }

// inline function

void SetScores(int midterm, int final, int hw1, int hw2)

{

midterm_ = midterm, final_ = final, hw1_ = hw1, hw2_ = hw2;

}

string GetGrade() { return grade_; } // inline function

};

Member function definition outside of the

class definition : Student example
// student.h

class Student {

private:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

public:

void SetInfo(string name, string id);

void SetScores(int midterm, int final, int hw1, int hw2);

string GetGrade();

};

// student.cpp

#include "student.h"

void Student::SetInfo(string name, string id)

{ name_ = name, id_ = id; }

void Student::SetScores(int midterm, int final, int hw1, int hw2)

{

midterm_ = midterm, final_ = final, hw1_ = hw1, hw2_ = hw2;

}

string Student::GetGrade()

{ return grade_; }

Member function: Scope resolution operator (::)

● :: is used to specify the namespace or the class membership.

● A::B means B is in a namespace/class A.

● ::B means B belongs the global namespace (most C library funtions).

#include <math.h>

namespace my_namespace {

class MyClass {

void FunctionA(int i);

// ...

};

void MyClass::FunctionA(int i) { /* ... */ }

void FunctionB(double v, MyClass* a) { /* ... */ }

} // namespace my_namespace

int main() {

my_namespace::MyClass a;

my_namespace::FunctionB(1.25, &a);

double v = ::cos(0.0);

return 0;

}

Member function: Stock example

stock.cpp

stock.h

Member function: Stock example

stock.cpp

stock.h

Quiz 1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Inline member functions

● To make a member function inline, you can define a member function in the class

definition (in header file)

● Or you can define a member function outside the class definition (BUT IN header f

ile) and use the inline qualifier.

● DO NOT define inline functions in source files.

● If an inline function defined in a source file is called from another source file, you'll get 'unresolved e

xternal' error (https://isocpp.org/wiki/faq/inline-functions#inline-member-fns).

https://isocpp.org/wiki/faq/inline-functions#inline-member-fns

Inline member functions

• Question: Can I define a non-inline member function in a header file

(outside the class definition)?

– Let's say main.cpp and test.cpp include one of the following header files:

#include <string>

class Student {

private:

std::string name_;

public:

std::string getName();

};

std::string Student::getName()

{

return name_;

}

#include <string>

class Student {

private:

std::string name_;

public:

std::string getName();

};

inline std::string Student::getName()

{

return name_;

}

link error: multiple definition of

Student::getName()

Ok

→ Functions defined in a header file must be inline,

otherwise you'll get multiple definitions error.

Class vs. Instance : Stock example 1

Stock apple;

apple.acquire(“Apple”, 100, 63);

Stock dell;

dell.acquire(“Dell”, 120, 30);

Apple

100

63

6300

Dell

120

30

3600

apple.show(); dell.show();

Class vs. Instance : Stock example 2

Constructor

• Constructors are special member functions that initialize the
object and is called when the object is created.

• They have the same name as the class and no return type.

• They are automatically called when the object of its class type is
defined.

class Student {

public:

string name_, id_, grade_;

...

public:

Student() { name_="noname"; id_="noid"; }

...

};

int main()

{

Student st; // Student::Student() is called!

cout << st.name_ << endl;

}

Constructor Overloading

class Student {

public:

string name_, id_, grade_;

...

public:

Student() { name_="noname"; id_="noid"; }

Student(string name, string id) { name_=name; id_=id; }

...

};

int main()

{

Student st1; // Student::Student() is called!

Student st2("Tom", "2016123456“); // Student::Student(string,

string) is called!

}

● A class can have multiple constructors.

Constructor Overloading

int main()

{

int a1 = 10;

int a2(10);

}

● (Note) You can initialize a primitive type variable in a

similar way.

Default constructor

● A default constructor is a constructor which is

called with no argument.

class Student {

public:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

...

public:

Student() // default constructor

{ name_="noname"; id_="noid"; }

Student(string name, string id) // this is not a default constructor

{ name_=name; id_=id; }

};

Default constructor

● A default constructor is implicitly created by

compiler if there is no user-defined constructor.

class Stock

{

public:

string company;

long shares;

double share_val;

};

int main()

{

Stock stock; // implicitly declared

default constructor is called!

cout << stock.company << endl;

cout << stock.shares << endl;

cout << stock.share_val << endl;

return 0;

}

class Stock

{

public:

string company;

long shares;

double share_val;

Stock(const string& co, long n, double pr)

{}

};

int main()

{

Stock stock; // compile error!

cout << stock.company << endl;

cout << stock.shares << endl;

cout << stock.share_val << endl;

return 0;

}

Constructor : Stock example

stock.cpp

Quiz 2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Member initializer list

• Member initializer list is the place where non-default
initialization of member variables can be specified.
● Members of primitive type (such as int) are initialized with

the parameter.

● Members of class type is initialized by calling the proper

constructor taking the arguments.

class Stock

{

public:

string company;

long shares;

double share_val;

Stock(const string& co, long n, double pr)

: company(co), shares(n), share_val(pr)

{}

};

Member initializer list &default constructor

● For member variables that are not initialized in a

constructor initializer list,
● Members of primitive type (such as int) remain uninitialized.

● Members of class type initialized by calling their classes’

default constructor.

class Student {

public:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

...

public:

Student(string name, string id)

: name_(name), id_(id)

{}

// member variables other than name_ & id_ remain

// uninitialized (for primitive types, e.g., midterm_)

// or initialized by their classes’ default constructor (for class type,

e.g., grade_ will be initialized by calling std::string::string())

...

};

Operator new and class constructor

• T* p = new T;

– If T is a primitive type: Allocates memory space to store data

of type T and the space remain uninitialized.

– If T is a class: Allocates memory space and initialize it by

calling default constructor of T

• T* p = new T(arguments);

– If T is a primitive type: Allocates memory space and initialize

it with the arguments

– If T is a class: Allocates memory space and initialize it by

calling the proper constructor that takes arguments

#include <iostream>

#include <string>

using namespace std;

class Stock

{

public:

string company;

long shares;

double share_val;

Stock() { cout << "Stock::Stock()" << endl; }

Stock(const string& co, long n, double pr)

: company(co), shares(n), share_val(pr)

{ cout << "Stock::Stock(const string&, long, double)" << endl; }

};

int main()

{

int* i1 = new int;

int* i2 = new int(10);

Stock* s1 = new Stock;

Stock* s2 = new Stock("Apple", 10, 125.0);

delete i1;

delete i2;

delete s1;

delete s2;

return 0;

}

Destructor

● A destructor is a special member function for clean-up that is called whe

n the object is destructed.

● Its name is '~' + the class name.

● It has no arguments and no return type.

● When a destructor is called,

● First, the body of the destructor function is executed.

● Second, destructors for member objects are called.
● (except static members → refer to Lecture 11)

● (Third, destructors of base classes are called → refer to Lecture 8)

Destructor example

(Focus on ~DoubleArray() destructor!)

class DoubleArray {

public:

DoubleArray() : ptr_(NULL), size_(0) {}

DoubleArray(size_t size) : ptr_(NULL), size_(0) { Resize(size); }

~DoubleArray() { if (ptr_) delete[] ptr_; }

void Resize(size_t size);

int size() const { return size_; }

double* ptr() { return ptr_; }

const double* ptr() const { return ptr_; }

private:

double* ptr_;

size_t size_; // size_t is unsigned int.

};

void DoubleArray::Resize(size_t size) {

double* new_ptr = new double[size];

if (ptr_) {

for (int i = 0; i < size_ && i < size; ++i) new_ptr[i] = ptr_[i];

delete[] ptr_;

}

ptr_ = new_ptr;

size_ = size;

}

Default Destructor

• A default destructor is implicitly created by

compiler if there is no user-defined destructor.

• For many classes, a default destructor is sufficient.

You only need to define a custom destructor

– when the class stores handles to system resources that

need to be released,

– or pointers that point to dynamically allocated memory

locations, also need to be released.

Stock class example

Stock class example

Stock class example

Quiz 3

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

this pointer

● Every object in C++ has access to its own address through a pointer called

this pointer.

● "this pointer" points to "this object", used to invoke a member function or

access to a member variable (passed as a hidden argument to the member f

unction)

=

this pointer – returning self reference

Stock apple(“Apple”, 100, 63);

Stock dell(“Dell”, 120, 30);

Apple

100

63

6300

Dell

120

30

3600

apple.topval(dell);

Invokes topval() with apple,
so this points to apple:
s is dell, *this is apple

dell.topval(apple);

Invokes topval() with dell,
so this points to dell:
s is apple, *this is dell

Member Var. and Parameter Names

• Question: Can member variables and function parameters have the same

name? -> Yes, but it's not recommended.

class Rect

{

public:

int width, height;

Rect():width(1), height(2) {}

void setValues(int width, int y)

{

this->width = width;

height = y;

}

};

int main()

{

Rect rt;

rt.setValues(10, 20);

cout << rt.width << endl; // 10

return 0;

}

class Rect

{

public:

int width, height;

Rect():width(1), height(2) {}

void setValues(int width, int y)

{

width = width;

height = y;

}

};

int main()

{

Rect rt;

rt.setValues(10, 20);

cout << rt.width << endl; // 1

return 0;

}

But if you don't, it compiles and runs fine,

but the result will not be what you think.

if you always use the “this” pointer, that

would be okay.

Array of Objects

Struct in C vs. Struct in C++

▪ In C, struct has only member variables, and is usually used with type

def

▪ to avoid using struct keyword when declaring a variable (struct _Point p1;).

▪ In C++, struct has member variables and member functions, and do

es not need typedef.

typedef struct _Point {

int x;

int y;

}Point;

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

struct Point {

int x;

int y;

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

P1.setXY(1, 2);

return 0;

}

C C++

Struct in C vs. Struct in C++

▪ In C, all struct member variables are public (can be accessed from an

ywhere).

▪ In C++, struct members can be one of public, private, or protected (t

he default is public).

typedef struct _Point {

int x;

int y;

}Point;

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

struct Point {

int x;

int y;

};

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

C C++

struct Point {

public:

int x;

int y;

};

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

C++

==

Struct in C vs. Struct in C++

▪ If members are private in C++ struct, they are not accessible outside

of the class. They need public access functions.

struct Point {

private:

int x;

int y;

};

int main(void){

Point P1;

P1.x = 3; // compile error!

P1.y = 4; // compile error!

return 0;

}

struct Point {

private:

int x;

int y;

public:

void setXY(int a, int b)

{x=a; y=b;}

};

int main(void){

Point P1;

P1.setXY(3, 4);

return 0;

}

Struct vs. Class in C++

● In C++, struct and class are almost the same.

● The only difference is default accessibility of members:

● In struct, public is default

● In class, private is default

class Point {

 int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.setXY(3, 4);

return 0;

}

struct Point {

private:

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.setXY(3, 4);

return 0;

}

=

Next Time

• Labs for this lecture:

– Lab1: Assignment 6-1

– Lab2: Assignment 6-2

• Next lecture:

– 7 - Standard Template Library

	슬라이드 1: Creative Software Design 6 – Class
	슬라이드 2: Midterm Exam
	슬라이드 3: Outline
	슬라이드 4: Class
	슬라이드 5: Class vs. Instance (or Object)
	슬라이드 6: Class definition
	슬라이드 7: Class access control
	슬라이드 8: Class access control
	슬라이드 9: Class access control : Stock example
	슬라이드 10: Class access control : Student example
	슬라이드 11: Member function
	슬라이드 12: Member function definition in the class definition : Student example
	슬라이드 13: Member function definition outside of the class definition : Student example
	슬라이드 14: Member function: Scope resolution operator (::)
	슬라이드 15: Member function: Stock example
	슬라이드 16: Member function: Stock example
	슬라이드 17: Quiz 1
	슬라이드 18: Inline member functions
	슬라이드 19: Inline member functions
	슬라이드 20: Class vs. Instance : Stock example 1
	슬라이드 21: Class vs. Instance : Stock example 2
	슬라이드 22: Constructor
	슬라이드 23: Constructor Overloading
	슬라이드 24: Constructor Overloading
	슬라이드 25: Default constructor
	슬라이드 26: Default constructor
	슬라이드 27: Constructor : Stock example
	슬라이드 28: Quiz 2
	슬라이드 29: Member initializer list
	슬라이드 30: Member initializer list &default constructor
	슬라이드 31: Operator new and class constructor
	슬라이드 32
	슬라이드 33: Destructor
	슬라이드 34: Destructor example (Focus on ~DoubleArray() destructor!)
	슬라이드 35: Default Destructor
	슬라이드 36: Stock class example
	슬라이드 37: Stock class example
	슬라이드 38: Stock class example
	슬라이드 39: Quiz 3
	슬라이드 40: this pointer
	슬라이드 41: this pointer – returning self reference
	슬라이드 42: Member Var. and Parameter Names
	슬라이드 43: Array of Objects
	슬라이드 44: Struct in C vs. Struct in C++
	슬라이드 45: Struct in C vs. Struct in C++
	슬라이드 46: Struct in C vs. Struct in C++
	슬라이드 47: Struct vs. Class in C++
	슬라이드 48: Next Time

